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Controlling one-dimensional Langevin dynamics on the lattice
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Stochastic evolutions of classical field theories have recently become popular in the study of problems such
as the determination of the rates of topological transitions and the statistical mechanics of nonlinear coherent
structures. To obtain high precision results from numerical calculations, a careful accounting of spacetime
discreteness effects is essential, as well as the development of schemes to systematically improve convergence
to the continuum. With a kink-bearingf4 field theory as the application arena, we present such an analysis for
a ~111!-dimensional Langevin system. Analytical predictions and results from high resolution numerical
solutions are found to be in excellent agreement.@S0556-2821~99!02822-2#
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I. INTRODUCTION

In recent years there has been growing interest in extr
ing nonperturbative quantum dynamical information such
topological transition rates from numerical Langevin a
Monte Carlo solutions of classical field theories at finite te
perature@1#. At the next level of sophistication, several a
tempts have been made at developing schemes that treat
lying modes classically and high frequency modes quan
mechanically@2#. Moreover, the equilibrium and nonequilib
rium classical statistical mechanics of nonlinear coher
structures such as kinks has historically received much at
tion @3# in the condensed matter literature. Until fairly r
cently, computer memory and performance restrictions w
sufficiently severe that Langevin evolutions could only
carried out at fairly low levels of accuracy and resolutio
However, present-day supercomputers have overcome
problem, at least for low dimensional systems, and one
well contemplate systematically studying, understandi
and improving the accuracy of stochastic evolutions. In t
paper we present just such a study applied to~111!-
dimensional Langevin systems.

Our focus will be on lattice errors for quantities comput
at thermal equilibrium. In calculations of this type, a stoch
tic partial differential equation~SPDE! with a fluctuation-
dissipation relation is solved as an initial value problem
ing finite differences. Because of the fluctuation-dissipat
relation, the system is eventually driven to thermal equil
rium and at late times one may measure values of thermo
namic quantities as well as time and space dependent c
lation functions. These quantities can depend on the lat
spacing,Dx, on the total system size, on the discretizati
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used for spatial operators, and on the time stepping algori
used to solve the resulting set of coupled stochastic ordin
differential equations. In one space dimension a fairly co
plete description can be given, since the question of lat
effects is one of convergence properties of SPDE’s rat
than of renormalization.

The configurational part of the partition function of a cla
sical field theory in one space dimension is free from div
gences. In particular, quantities such as kink densities, m
sured from finite difference solutions of the correspond
SPDE’s, converge to a well-defined limit as the lattice sp
ing is reduced towards zero. The question of exactly how
convergence scales withDx is still a matter of practical im-
portance: numerical solutions are limited by the availa
computing power and memory to a finite range of values
Dx. While finite volume effects can be important in sma
lattices, they are not important if the total lattice length
much larger than the longest correlation length. We will a
sume that this is always the case in the considerations be

A complete constructive procedure for determining t
spatial lattice error, and possibly eliminating it to some ord
in Dx, exists. The method proceeds as follows. In equil
rium, the probability of a given set of configurations can
calculated from the static solution of the Fokker-Plan
equation corresponding to the particular spatial discretiza
and time-stepping algorithm applied to the SPDE of intere
With time-stepping errors tuned to be subdominant,
transfer integral@4# corresponding to the lattice Hamiltonia
can be evaluated to some given order inDx. Correlation
functions and thermodynamic quantities, which can all
extracted from the transfer integral, explicitly exhibit lattic
dependences allowing the convergence to the continuum
be read off directly. We describe this procedure in mo
detail below.

In more than one space dimension, methods have b
devised to improve the convergence to the continuum of fi
theories formulated on the lattice@5#. These methods rely on
©1999 The American Physical Society39-1
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renormalization group techniques and require an input fr
either perturbation theory or non-perturbative numeri
studies. No direct analytic formulation of nonperturbati
physics is, however, possible in general. In contrast, in
space dimension, the physics of greatest interest is the~ther-
mo!dynamics of kinks which is nonperturbative. The trans
integral allows us access to nonperturbative physics and
be formulated in the continuum as well as on the lattice@6#.
Trullinger and Sasaki obtained the lowest-order lattice c
rections to the Schro¨dinger equation that emerges from th
transfer integral@7#. They are proportional toDx2 and are
equivalent to a corrected on-site potential. As we show
low, the latter result can be adapted not only to compute
order of the lattice errors but also to introduce a local co
terterm in the stochastic evolution equations that impro
the convergence to the continuum.

The class of problems considered here are~111!-
dimensional classical field theories defined by the Ham
tonian:

H5E dxF1

2
p21

1

2 S ]F

]x D 2

1V~F!G . ~1!

The corresponding continuum SPDE,

]2

]t2
F~x!5

]2

]x2
F~x!2h

]

]t
F~x!2V8~F!1F~x,t !, ~2!

is second order in time, where withb51/kT, the noise and
damping obey a fluctuation-dissipation relation:

^F~x,t !F~y,s!&52hb21d~ t2s!d~x2y!. ~3!

In this paper we will adopt the example of the double-w
F4 theory:V(F)52(m2/2)F21(g2/4)F4. We shall work
in a dimensionless form of the theory given by the transf
mations:f5F/a, x̄5mx, and t̄ 5mt, where a25m2/g2.
Under these transformations, the original Hamiltonian
comesH̄5H/(ma2) where H̄ is of the same form as th
original HamiltonianH, except that the potentialV(f)5
2(1/2)f21(1/4)f4.

This theory admits the well-known~anti-!kink solutions
which, at zero temperature, are exact solutions of the s
field equations connectingf521 at x5(1)2` to f5
11 at x5(2)1`. In thermal equilibrium, the balance be
tween noise and damping is manifested in the balance
nucleation and annihilation of kink-antikink pairs@8#. At low
temperature, Wentzel-Kramers-Brillouin~WKB! techniques
applied to the transfer integral@9,10# yield the following pre-
diction for the density of kinks:

rk}~Ek /kT!1/2exp~2Ek /kT!, ~4!

whereEk5A8/9, the energy of an isolated kink. Supportin
numerical evidence exists@11#, but precise results have bee
difficult to obtain until recently due to the large amount
computing time needed at temperatures low enough
clearly distinguish kinks. The best results obtained so far
for a special double-well potential where exact theoreti
10503
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computations can also be carried out. In this case, it has b
shown that the theoretical and numerical results agree wi
statistical bounds set by the finite volume of the simulatio
@12#.

The classical partition function for af4 theory, in any
spatial dimension 2<D,4, is super-renormalizable; i.e
there are a finite number of perturbative diagrams that
divergent in the continuum, but can be appropriately s
tracted by the inclusion in the theory of a finite number
suitable counterterms. The situation is different forD51:
the continuum partition function is finite and no renormaliz
tion is necessary.

An alternative approach to the one described here
been suggested by Gleiser and Mu¨ller @13# who have pro-
posed a perturbative counterterm for use in~111!-
dimensional Langevin equations. A weakness of the la
proposal is that it relies on an approximation to the fr
energy; in many situations the latter is a poor indicator of
true dynamics of field theories@14#. Moreover, their counter-
term is based on an approximate effective potential ca
lated by perturbing about a uniform state. We will sho
below, with both analytical and numerical results, the ina
equacy of their perturbative counterterm in dealing with t
convergence to the continuum.

The paper is organized as follows. In Sec. II we consi
the evolution of the probability density of the discretize
SPDE. We summarize published calculations@15,16# of the
effect of time discretization on the equilibrium density. Th
transfer integral is introduced in Sec. III. We perform calc
lations at finiteDx and show that the leading order corre
tions to the continuum of observable quantities are prop
tional to Dx2. An examination of the form of the
Schrödinger equation at finiteDx reveals a natural choice fo
a local counterterm with which to improve the convergen
properties of discretized Langevin equations. The alterna
one-loop approach of Gleiser and Mu¨ller is examined in Sec.
IV. Numerical results are presented in Sec. V. In Sec. VI
end with a discussion of our results.

II. THE DISCRETE TIME FOKKER-PLANCK EQUATION

Our first step in determining the~equilibrium canonical!
distribution to which a given Langevin dynamics converg
for long times is to derive the corresponding Fokker-Plan
equation. This can be done on the lattice as well as in
continuum.

On the lattice, an SPDE is solved by updating 2N quan-
tities $f i(t),p i(t)% where i 51, . . . ,N. We take the lattice
Hamiltonian in one space dimension,H lat , to be

H lat5Dx(
i 50

N F1

2
p i

21S~f i !G , ~5!

with

S~f i !5
1

2

~f i 112f i !
2

Dx2
1V~f i !, ~6!

V~f i !52
1

2
f i

21
1

4
f i

4 . ~7!
9-2
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The corresponding Fokker-Planck equation for the 2N vari-
ables has a static solution that can, in principle, be attaine
late times in a Langevin simulation~in the sense of ensembl
averages over individual simulations!.

In practice the time as well as the space discretization
Langevin equation leads to errors. The simplest stocha
time stepping is of the Euler type and can be written as

p i~ t1Dt !5p i~ t !2DtFhp i~ t !1
]H lat

]f i~ t !G1j i~ t !,

f i~ t1Dt !5f i~ t !1Dtp i~ t !. ~8!

We have chosen the case of additive Gaussian white no
related to the dampingh by the ~suitably discretized!
fluctuation-dissipation relation:

^j t~ t !&50, ^j i~ t !j j~ t8!&5
2h

b

1

DtDx
d i j d tt8 . ~9!

In order to understand the effect of time discretization
is possible to write a discrete time Fokker-Planck equati
describing the evolution of the probability density function
associated with Eqs.~8!, ~9! @16#:

P@$p,f%,t1Dt#

5expS 2Dtp i

]

]f i
D3expFDt

]

]p i
S hp i1

]H lat

]f i
D

1Dt
h

b

]2

]p i
2GP@$p,f%,t#, ~10!

where summation over repeated indices is implied. For s
plicity this will be assumed in what follows and indices w
be dropped. The discrete time equation~10! can be written in
the form

P@$p,f%,t1Dt#5e2DtHFPP@$p,f%,t#. ~11!

The operators in the two exponents in Eq.~10! are non-
commuting. To reduce Eq.~10! to the form~11! we use the
Campbell-Baker-Hausdorff theorem: given the operatorA
andB, there is an operatorC such thateAeB5eC, with

C5A1B1
1

2
@A,B#1

1

12
@A,@A,B##1

1

12
@B,@B,A##1 . . . .

~12!

Expanding to first order inDt, we have

HFP5
h

b

]2

]p2
2p

]

]f
1

]

]p S hp1
]H lat

]f D
1

1

2
DtFhp1

h

b

]

]p
1

]H lat

]f G ]

]f
2

1

2
Dtp

]2H lat

]f2

]

]p

1O~Dt2!. ~13!

Notice that each factor ofH lat introduces a power ofDx.
10503
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The solution ofHFPP@$f,p%#50 is the canonical distri-
bution approached by the discretized system at late times
form can be computed for smallDt. To zeroth order for the
momenta and orderDt for the fields, we obtain

P@$p,f%#5expS 2Dx(
i

Fb8
p i

2

2
1bS~f i !

2Dt
b

2
p i

]S

]f i
G D , ~14!

where b85b(11Dth/2). Note that the discretization in
duces cross terms betweenf andp in the canonical distri-
bution. This is a general feature of higher order solutions
Dt. ~These terms rapidly become very complicated.! Differ-
ent time discretizations lead to different discrete tim
Fokker-Planck equations. The numerical simulations
scribed below employed a stochastic second order Run
Kutta algorithm@17#.

The equilibrium density of configurations of the spac
and time-discretized theory is obtained by performing
Gaussian integral over the momenta in Eq.~14!:

P@$f%#5AexpF2bDx(
i

H S~f i !2
Dt2

8 S ]S

]f i
D 2J G .

~15!

The effect of the time discretization is explicitly seen as
modification of the equilibrium density. Further integratio
of Eq. ~14! cannot be performed so easily because e
S(f i) depends also onf i 11. The functional integral of
P@f# over f defines the configurational partition function

Zf5ZpE Dfe2bS[f]5)
i 51

N E df̄ ie
2bDS(f i ), ~16!

which we study in the next section. Here df̄ i5N̄df i , with
N̄5Ab/2pDx.

A calculation of the type outlined in this section can
used to evaluate the error due to finiteDt in the canonical
distribution for more complicated time stepping than the E
ler method considered above@18#. Alternatively, in cases
where one is purely interested in sampling from a canon
distribution, there exist efficient ‘‘hybrid Monte Carlo’
methods that randomize the momenta, then accept or dis
configurations based on a Metropolis test@19#. These meth-
ods permit the elimination of theDt dependence in the ca
nonical distribution. However, they do not generate the
namical evolution that we are interested in, such
trajectories of individual kinks. In practice we have found
possible, givenDx, to use a value ofDt and a time stepping
algorithm such that the errors due to finite time steps
smaller than those due to finite grid spacing.

III. THE TRANSFER INTEGRAL

To compute the partition function we use the transfer
tegral method@4#. The configurational partition functionZf
is given by
9-3
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LUÍS M. A. BETTENCOURT, SALMAN HABIB, AND GRANT LYTHE PHYSICAL REVIEW D60 105039
Zf5E
2`

`

df̄1 . . . df̄N)
i 51

N

T~f i ,f i 11!, ~17!

where

T~f i ,f i 11!5expH 2
1

2
bDxF S f i 112f i

Dx D 2

1V~f i !

1V~f i 11!G J
andfN115f1 implements spatially periodic boundary co
ditions. The difficulty with evaluatingZf lies in the coupling
of integrals at different space points. The idea behind
transfer operator method is to ‘‘localize’’ the evaluation
the integrals in Eq.~17!.

The transfer operatorT̂ is defined as follows

T̂c~f i 11!5E
2`

`

df̄ iT~f i ,f i 11!c~f i !. ~18!

Suppose we can find the eigenvalues ofT̂. That is, suppose
we can solve the following Fredholm equation:

E
2`

`

df̄ iT~f i ,f i 11!cn~f i !5tncn~f i 11!, ~19!

where thetn are positive constants that we write for lat
convenience as

tn5e2bDxen. ~20!

Then

Zf5(
n

tn
N . ~21!

In the limit N→`, the sum~21! is dominated by the larges
eigenvalue:

Zf5(
n

tn
N→t0

N5e2bLe0, ~22!

whereL5NDx is the physical length of the lattice. In th
thermodynamic limitL→`, the free energy density is sim
ply Ff5e0. It is clear that once the partition function
known in the thermodynamic limit, we may compute from
any thermodynamic quantity. Moreover, it is possible
show that spatial, and in linear response theory, temp
correlation functions can also be computed via a knowle
of the spectrum of the transfer operator@20#.

We now turn to the procedure for the solution of Eq.~19!
by first converting it into an infinite order partial differentia
equation. We first rewrite Eq.~19! as
10503
e

al
e

e2 1/2 bDxV(f i 11)

3E df̄ ie
2 b/2Dx(f i 112f i )

2
e(f i2f i 11)]/]f i 11x~f i 11!

5e2bDxencn~f i 11!, ~23!

where

x~f!5e2 1/2 bDxV(f)cn~f!. ~24!

The special form of the Fredholm kernel has led to a sim
Gaussian integral that yields

e2 1/2 bDxV(f i 11)e(Dx/2b)]2/]f i 11
2

„e2 1/2 bDxV(f i 11)cn~f i 11!…

5e2bDxencn~f i 11!. ~25!

This ~exact! result yields the form eUeDeUc5eCc whereU
andD are operators andC is a real number. The Campbel
Baker-Hausdorff~CBH! series in this case is formally a
expansion in powers ofDx. To linear order inDx, the CBH
expansion applied to Eq.~25! yields

e2bDxV(f)1 ~Dx/2b! ~]2/]f2!cn~f!5e2bDxencn~f!, ~26!

or equivalently

F2
1

2b2

]2

]f2
1V~f!Gcn5encn . ~27!

The transfer integral technique thus reduces the calcula
of Zf to the calculation of the eigenvaluesen of a corre-
sponding Schro¨dinger equation:

H 2
1

2b2

]2

]f2
1U~f,Dx!J cn5encn , ~28!

where U(f,0)5V(f). The calculation is explicitly per-
formed on the lattice, at finiteDx: leading order corrections
to the eigenvalues of the Schro¨dinger equation~28! are pro-
portional toDx2. For the problem at hand, one finds@7#

H 2
1

2b2

]2

]f2
1V~f!1

1

6
~Dx!2F1

4 S ]V

]f D 2

1
1

2b2

]2V

]f2

]2

]f2

1
1

2b2

]3V

]f3

]

]f
1

1

8b2

]4V

]f4G J cn5encn . ~29!

Higher order corrections inDx in Eq. ~29! can be computed
in a tedious though straightforward fashion by going
higher orders in the CBH expansion. Because of the symm
ric form of Eq. ~25! and the Hermitian–anti-Hermitian alter
nation of terms in the CBH expansion, the error terms
always of even order in powers ofDx. Thus, if a method is
found to cancel errors up to a certain orderm, it automati-
cally reduces the error to orderm12.

The simplest example ofDx dependence is the fre
theory:V5 1

2 f2. Then Eq.~29! reduces to
9-4
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F2
1

2b82

]2

]f2
1

1

2
m82f2Gcn5encn , ~30!

with b85b/A12a, m85A11a/2 and a5(Dx)2/6. This
implies in particular for the energy spectrumen5(n
1 1

2 )m8/b8.(n1 1
2 )(1/b)@12 1

24 (Dx)2#. The free theory is
a convenient special case because the corresponding SP
linear and exactly solvable. Quantities such as^f2(x)& can
be evaluated exactly and compared to the results from
transfer integral. Both procedures agree, and

^f2~x!&5
1

2b

1

A11
Dx2

4

5
1

2b
S 12

1

8
Dx2D 1O~Dx4!.

~31!

Note that the leading dependence on lattice spacing is
portional toDx2.

We now turn to the question of lattice errors in determ
ing the kink density, which, at sufficiently low temperature
is controlled completely by the correlation length deriv
from the two-point function^f(0)f(x)&. Applying the
transfer integral formalism, it can be shown that this cor
lation function is a sum of exponentials with exponents p
portional to differences of eigenvalues of Eq.~28!. The cor-
relation length is determined by the energy differen
between the ground and first excited states of Eq.~28! @4#. At
low temperatures, the WKB~or semiclassical! approximation
is excellent and this energy difference is the exponenti
small tunnel-splitting term. Note that at low temperatures
kink density is given directly by the correlation length,rk
.1/(4l`) @11#.

At low temperatures the first two eigenfunctions of E
~27! are of the form

cS5
1

A2
~cL1cR!,

cA5
1

A2
~cL2cR!, ~32!

wherecS is the~symmetric! ground state andcA is the~an-
tisymmetric! first excited state. HerecL andcR are the usual
localized states, one on each side of the barrier. To estim
the error due to finite lattice spacing we use first order p
turbation theory in (Dx)2. The corrected energies are then

E0
(Dx)5E01^cSudHucS&,

E1
(Dx)5E11^cAudHucA&, ~33!

whereE0 andE1 are the results from the continuum theo
and dH;O(Dx2) is the error Hamiltonian. It follows tha
the energy difference is

DE10
(Dx)5DE1022^cLudHucR&. ~34!
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The error Hamiltonian can be read off from Eq.~29! and it is
clear that the error in energy differences, and hence k
density at low temperatures, is alsoO(Dx2) at leading order.
Corrections to the the eigenstates lead to higher orderDx
dependences.

More generally, given any eigenvectoruc& of the con-
tinuum Schro¨dinger equation, for the specific form ofdH of
Eq. ~29!, integration by parts and use of Eq.~28! yields @7#

^cudHuc&52
~Dx!2

24
^cuS dV

df D 2

uc&. ~35!

Apart from the eigenvectors, there is no temperature dep
dence in Eq.~35!. This remarkable fact immediately sugges
the introduction of a counterterm in the lattice equatio
which, in perturbation theory, would lead to the cancellati
of errors of order (Dx)2. Modifying the potential as follows,

V~f!5V~f!2
~Dx!2

24 S dV

df D 2

, ~36!

leads to the cancellation of lattice dependences to o
(Dx)2 in a way that preserves the fluctuation-dissipation
lation ~taken at any temperature! and is thus suited for dy-
namics as well as thermodynamics. WithDx taken to be
small enough, the leading error now becomes domina
O(Dx)4. We note that unlike the situation for partial diffe
ential equations~PDE’s! where one improves the lattice ap
proximation for spatial derivatives, here a local counterte
produces the same effect.

In the specific case of af4 potential, the counterterm~36!
gives a new potential including the term2Dx2f6/24. The
corrected potential is thus unbounded from below. In fi
order perturbation theory this is not a problem since the c
responding wave function is exponentially small in t
pathological region of the compensated potential@7#. How-
ever, if the full potential is to be used in a Langevin simu
tion it is clear that at sufficiently long times, the unbounde
ness of the potential implies the nonexistence of a sta
thermal distribution. Fortunately, it is simple to estima
whether this problem actually shows up in real simulatio
The answer, as we show below, is that it is of absolutely
practical significance in the parameter range of interest.

The resolution of this apparent difficulty brings us back
the validity of the expansion inDx. So far we have implic-
itly assumed thatb.1, so thatDx is the only small param-
eter and controls the order of the expansion. If on the ot
hand one wanted to work in a regime whereDx>b, the
whole expansion inDx would have to be rederived in term
of an appropriate small parameter. In any case this la
regime would always constitute a poor approximation to
continuum: It is the Ising~disorder! limit of the field theory.

A simple argument for why the counterterm works
small temperatures, meaningDx!b, is the following. Con-
sider a large temperature relative to the potential barrier
tween the minima. Then, from the uncorrected eigenva
equation,^f(x)2&.b21. On the other hand, the value o
f(x)2 for which a fluctuation can probe the effect of th
negativef6 term at largef is f2(x).6/(Dx)2. Therefore
9-5
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the condition for the negativef6 term to not affect the evo
lution is D2x!6b. At lower temperatures it is more appro
priate to explicitly calculate the Kramers escape rate@21#
across the barrier separating the metastable and unstab
gions of the compensated potential. Assuming the lat
sites to be uncoupled~this gives an overestimate of the tru
rate!, the calculation yieldsGK;exp„24b/3(Dx)4

…, which
turns out to be vanishingly small in practice: ForDx50.5,
b55, and a lattice size of 106 points, the probability of an
escape at a single site per unit time is only;10241. In our
numerical calculations we have verified that the counterte
can indeed be successfully used in the appropriate circ
stances with no hint of any instabilities.

IV. THE ONE LOOP APPROACH

In contrast to the above considerations, the one-lo
counterterm proposed in Ref.@13# arises from the conjectur
that the leading dependence of the partition function onDx
coincides with the most divergent term for the same the
in higher dimensions. Although the relevant computatio
are well known we will spell out some of the steps to ma
every assumption clear. The basic idea is to start again
the canonical partition function:

Z5NE Dfe2bS[f] . ~37!

The fieldf is then decomposed into a background fieldfb
and a fluctuation fieldx, f5fb1x, and assuming the fluc
tuations to be small, expanded aroundfb :

S@fb1x#'S@fb#1
dS

dfU
x50

x1
1

2
x

d2S

df2U
x50

x1 . . . .

~38!

If fb is an extremum ofS@f# then the first term vanishes
Under this assumption

Z5Ne2bS[fb]E Dxe2b ~1/2! x ~d2S/df2!ux50x. ~39!

Becaused2S/df2
ux50

is independent ofx the functional in-
tegration is strictly Gaussian and can be performed exac

NE Dxe2b ~1/2!/ x ~d2S/df2! ux50x5Det21/2S SI9

S09
D . ~40!

Here we have adopted the usual normalization to the
theory. The actionS5S01SI , was decomposed into the a
tion for the free theoryS0 ~gradient and mass terms! and the
interactionsSI . Primes denote functional derivatives relati
to f.

This can be written as

Det21/2S S9

S09
D 5Det21/2~11K !5e2 ~1/2!Tr log(11K),

~41!
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whereK5SI9/S09 . Performing the 1Dk-space trace integral
(m50), with an ultraviolet cutoffL5p/Dx, we obtain one
loop corrections to the potential

V1L~f,L!5V01
T

4
ASI9~fb!2

TDx

4p2
SI9~fb!. ~42!

The partition function is now approximately given by

Z5e2bS[fb] 1 ~1/4b!ASI9(fb)2 ~Dx/4bp2! SI9(fb). ~43!

Equations~42! and ~43! constitute the basis for the pro
posal of Ref.@13#. In order to cancel the leadingDx depen-
dence arising in this scheme, the original bare potentia
modified by the addition of the last term in Eq.~42! ~with a
positive sign!.

Notice that while a careful accounting of the dynamics
the lattice yields a leading correction of order (Dx)2, regard-
less of any assumptions about the dominant thermodyna
field configurations, the one-loop procedure leads to a c
rection of orderDx. In contrast to the correct answer di
cussed in the previous section, the one-loop procedure g
no corrections for the free theory since in this caseSI[0.

V. COMPARISON WITH NUMERICAL SOLUTIONS

Accurate Langevin studies of even one-dimensional fi
theories require large lattices and long running times. It
only recently been realized, by comparison against ex
analytic results for nonlinear field theories, that fairly lar
errors ~e.g., 30% or greater in the kink density! can easily
arise if numerical studies are not carried out with care
error control methodologies@12#.

In order to test the predictions of the previous sectio
we ran large scale Langevin evolutions with typical latti
sizesN5106, and with the time step related to the lattic
spacing byDt50.05Dx2.

A first test which allows comparison against exact analy
cal results are the lattice dependences for the linear SP
~free theory! defined byV(f)5f2/2. Figure 1 shows the
plot of the thermal equilibrium 12^f2& versusDx. The nu-
merical data are in excellent agreement with the~exact! the-
oretical predictions.

In the more general case of a nonlinear SPDE, we can
expect explicit exact solutions for arbitraryDx, but thermo-
dynamic quantities can be obtained to orderDx2 from the
eigenvalues of the perturbed Schro¨dinger equation extracted
from the transfer integral, as described in Sec. III. In the c
of predictions for the kink density, precise comparison w
numerical results has not been possible until recently, pa
due to the difficulty of counting the number of kinks in
noisy configuration. The correlation length is, however
well-defined quantity at any temperature, independent
kink-counting schemes.

We extract the correlation lengthl` from the numerically
determined field configurations as follows. Let

c~ iDx!5^f~ j !f~ j 1 i !&, ~44!
9-6
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and

l~x!5DxXlogS c~x!

c~x1Dx! D C21

. ~45!

The correlation length is limx→`l(x):

^f~0!f~x!&→exp~2x/l`!, x→`. ~46!

The correlation functionc(x) is in general a sum of ex
ponentials ~the smallest exponent being the correlati
length!. For values ofx much smaller than the correlatio
length, therefore,l(x),l` . In practice, for largex, finite
statistics mean that the ratio in Eq.~45! cannot be evaluated
precisely. One therefore evaluates the correlation length
plotting l(x) versusx and looking for a plateau at interme
diate values ofx.

We measured the correlation length using three differ
Langevin evolutions:~a! A standard simulation using
second-order stochastic Runge-Kutta integrator;~b! a simu-
lation with the counterterm~36!; ~c! a simulation with the
counterterm proposed in Ref.@13#. Results forDx50.5 are
shown in Fig. 2. The counterterm~36! shifts the result from
the Langevin evolutions~a! on the lattice very close to th
exact continuum result, shown as a dashed line. The stan
simulation overestimatesl` , whereas the one-loop counte
term results in an underestimate with an error larger than
‘‘bare’’ simulation ~a! without any counterterm.

As a further test we repeated, with large lattices a
smaller time steps, a numerical experiment presented in
@13#. The initial condition is chosen uniform at the minimu
of V(f), f0521; the system is then run for a short tim
~before any kinks appear! so as to observe the relaxation to
mean valuefm . Although this does not result in a strictl
thermalized configuration, small wavelength fluctuatio
quickly display a thermal spectrum.~In other words, the
‘‘phonon’’ relaxation time is much smaller than the time
cale for kink nucleation.! In Fig. 3 we show the value of^f&

FIG. 1. The dependence of 12^f2& on Dx, for V(f)5f2/2.
The numerical results (d) at b52 are compared with the exac
equilibrium result~31! ~solid line!. The dashed line shows the Tay
lor expansion of Eq.~31! to orderDx2. Statistical error bars are no
shown if they are smaller than the symbol size.
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as a function of time for four values ofDx. From the plateau
for moderate times, we can obtain a fairly precise estimat
fm . As a cautionary note, we point out that at smallDx, a
small step size is also needed~see Fig. 4!.

It is possible to employ a Gaussian approximation~fol-
lowing Ref.@11#! to obtain a rather good estimate offm as a
function ofDx, the result being shown in Fig. 5: The leadin
dependence, both analytically and numerically, is clea
quadratic inDx. To obtain the analytic result, we use the fa
that the probability density off is the square of the groun
state of the Schro¨dinger equation~28!. ~This density emerges
from dynamic simulations or calculations; it is not an inp
to numerics.!

We proceed further by using a Gaussian ansatz@11# for
the ground state eigenfunction of~27!:

c0~f!5S V

p D 1/4

expS 2
1

2
V~f2f0!2D . ~47!

FIG. 2. The correlation lengthl computed with the bare poten
tial (d), the counterterm of Eq.~36! (L) and the one-loop coun
terterm (n), for Dx50.5 andb55. The dashed line shows th
continuum exact result, computed via the transfer integral.

FIG. 3. Early evolution of the space-averaged mean value of
for different values of the lattice spacingDx. From top to bottom,
the lattice spacings areDx50.25, 0.5, 0.75, 1.0. We used lattice
of 1 048 576 points andDt50.05Dx2. b510, h51.
9-7
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The parametersV and f0 are obtained by minimizing the
energy

E05E
2`

`

c0~f!S 2
1

2b2

]2

]f2
1V~f!D c0~f!df. ~48!

For largeb the two free parameters are related by

V5b~3f0
221!1/21O~1!, ~49!

and

E052
1

2
f0

21
1

4
f0

41b21
1

2
~3f0

221!1/21O~b22!.

~50!

The dependence offm on Dx can now be estimated usin
the Gaussian approximation of Eq.~47!. At finite Dx, we
replaceV(f) in Eq. ~48! by V(f)1 1

24 Dx2
„d/df) V(f)…2.

Minimizing Eq. ~50! with respect tof0 gives

FIG. 4. Early evolution of the space-averaged mean value of
for two values of the time stepDt, with b510, h51.

FIG. 5. Space- and time-averaged mean value off for different
values of the lattice spacingDx. The solid line is the large-b esti-
mate ~51! obtained from the Gaussian ansatz~47! with b510, h
51. Statistical error bars are not shown if they are smaller than
symbol size.
10503
f0~Dx!5f0~0!1b21Dx2
11

64A2
1O~b22!, ~51!

which is plotted in Fig. 5, in excellent agreement with t
numerical results.

VI. CONCLUSIONS

We have presented a procedure to identify space and
discreteness effects in Langevin studies of~111!-
dimensional field theories on the lattice. This scheme perm
the determination of the correct continuum limit of th
theory in thermal equilibrium. In particular, we have show
that for the standard spatial discretization of the Lange
equation, quantities of interest such as the kink density
the expectation value of the field and its variance differ fro
the continuum values by terms of orderDx2. High resolution
numerical results are in excellent agreement with our ana
cal predictions.

In any numerical Langevin solution, errors result from t
necessary discretization in both time and space. The effe
the former is to modify the form of the canonical distributio
as seen from the stationary solution of the correspond
Fokker-Planck equation. The use of higher order time st
ping algorithms can render this error subdominant wh
compared to errors arising from the discretization of the s
tial lattice.

Spatial discretization errors can be computed system
cally in powers of (Dx)2 via the use of the transfer integra
to solve for the partition function on the lattice. This proc
dure leads to the identification of a simple local counterte
that removes the leading order lattice error in Langevin e
lutions at low temperature.

For thef4 theory in one space dimension, the density
kinks converges to a well-defined value at any tempera
low enough that kinks are clearly separated from sm
wave-length fluctuations~or ‘‘phonons’’!. In practice this is
essentially the range of temperatures where the dilute
approximation~which is equivalent to a WKB solution of the
transfer integral! is valid. Precision calculations over a wid
range of temperatures that agree with transfer integral
dictions are reported in Ref.@12#. For quantities that are de
fined unambiguously at arbitrary temperatures, such as
correlation length, results based on the WKB approximat
to the transfer integral will fail at sufficiently high tempera
tures. This is independent of lattice errors and does not
clude analytical and numerical study using lattice simu
tions.

Our results disagree with those reported by Gleiser
Müller based on a one-loop counterterm@13#. A critical ex-
amination of their proposal has shown that it does not in f
constitute a scheme for the control and elimination of latt
errors. We have also carried out a direct comparison of
numerical results with those presented in Ref.@13# and are
led to conclude that their data must have been of insuffic
quality to quantitatively characterize lattice spacing dep
dences.

Finally we wish to reiterate that the methods presen
e
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here depend on the use of the transfer integral to solve~ex-
actly! for the nonperturbative field thermodynamics. The a
plication of the procedure described above is in general g
anteed for any~local! field theory in one spatial dimension
requiring only the choice of the appropriate potential.

In higher dimensions such a solution becomes incre
ingly difficult. Nevertheless, for the particular case of tw
dimensions several lattice models can be solved exactly,
cisely by applying the transfer integral technique@22#. The
eigenvalue problem, elegantly posed in terms of an ordin
time-independent Scho¨dinger equation in one dimension
now amounts to solving for the eigenvalues of an infin
matrix. Regardless of this apparent difficulty, exact solutio
v,

l-

-
a

.

R.

-

.

10503
-
r-

s-

e-

ry

s

are known in several interesting cases, most notably perh
for the 2D Ising model on a square lattice. It is therefo
conceivable that the detailed approach to the continuum
these models can be understood via the procedure desc
above.
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